cpufreq: update_limits 实现和引用
void acpi_processor_ppc_has_changed(struct acpi_processor *pr, int event_flag)
{
int ret;
if (ignore_ppc || !pr->performance) {
/*
* Only when it is notification event, the _OST object
* will be evaluated. Otherwise it is skipped.
*/
if (event_flag)
acpi_processor_ppc_ost(pr->handle, 1);
return;
}
ret = acpi_processor_get_platform_limit(pr);
/*
* Only when it is notification event, the _OST object
* will be evaluated. Otherwise it is skipped.
*/
if (event_flag) {
if (ret < 0)
acpi_processor_ppc_ost(pr->handle, 1);
else
acpi_processor_ppc_ost(pr->handle, 0);
}
if (ret >= 0)
cpufreq_update_limits(pr->id);//调用下面的update_limits入口,
}
/**
* cpufreq_update_limits - Update policy limits for a given CPU.
* @cpu: CPU to update the policy limits for.
*
* Invoke the driver's ->update_limits callback if present or call
* cpufreq_update_policy() for @cpu.
*/
void cpufreq_update_limits(unsigned int cpu)
{
if (cpufreq_driver->update_limits)
cpufreq_driver->update_limits(cpu);
else
cpufreq_update_policy(cpu);
}
EXPORT_SYMBOL_GPL(cpufreq_update_limits);
static struct cpufreq_driver intel_pstate = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_pstate_verify_policy,
.setpolicy = intel_pstate_set_policy,
.suspend = intel_pstate_suspend,
.resume = intel_pstate_resume,
.init = intel_pstate_cpu_init,
.exit = intel_pstate_cpu_exit,
.offline = intel_pstate_cpu_offline,
.online = intel_pstate_cpu_online,
.update_limits = intel_pstate_update_limits,//频率更新的入口函数
.name = "intel_pstate",
};
来看下具体的调用流程, 说明比较少. 看函数call的过程
static void intel_pstate_update_limits(unsigned int cpu)
{
mutex_lock(&intel_pstate_driver_lock);
update_turbo_state();
/*
* If turbo has been turned on or off globally, policy limits for
* all CPUs need to be updated to reflect that.
*/
if (global.turbo_disabled_mf != global.turbo_disabled) {
global.turbo_disabled_mf = global.turbo_disabled;
arch_set_max_freq_ratio(global.turbo_disabled);
for_each_possible_cpu(cpu)
intel_pstate_update_max_freq(cpu);
} else {
cpufreq_update_policy(cpu);
}
mutex_unlock(&intel_pstate_driver_lock);
}
static void intel_pstate_update_max_freq(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
struct cpudata *cpudata;
if (!policy)
return;
cpudata = all_cpu_data[cpu];
policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
refresh_frequency_limits(policy);//会调用set policy 来更新策略
cpufreq_cpu_release(policy);
}
void refresh_frequency_limits(struct cpufreq_policy *policy)
{
if (!policy_is_inactive(policy)) {
pr_debug("updating policy for CPU %u\n", policy->cpu);
cpufreq_set_policy(policy, policy->governor, policy->policy);
}
}
EXPORT_SYMBOL(refresh_frequency_limits);
会调用到cpufreq_set_policy() 来更新调频策略
-> ret = cpufreq_driver->verify(&new_data);
-> return cpufreq_driver->setpolicy(policy);
所以来看 refresh_frequency_limits 这个函数的主要内容就是重新来verify 频点和设置新的policy 状态.
static int cpufreq_set_policy(struct cpufreq_policy *policy,
struct cpufreq_governor *new_gov,
unsigned int new_pol)
{
struct cpufreq_policy_data new_data;
struct cpufreq_governor *old_gov;
int ret;
pr_err("+++++++ cpufreq_set_policy 1 ++++++++\n");
memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
new_data.freq_table = policy->freq_table;
new_data.cpu = policy->cpu;
/*
* PM QoS framework collects all the requests from users and provide us
* the final aggregated value here.
*/
new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
pr_err("setting new policy for CPU %u: %u - %u kHz\n",
new_data.cpu, new_data.min, new_data.max);
/*
* Verify that the CPU speed can be set within these limits and make sure
* that min <= max.
*/
pr_err("+++++++ cpufreq_set_policy 2 ++++++++\n");
ret = cpufreq_driver->verify(&new_data);
if (ret)
return ret;
pr_err("+++++++ cpufreq_set_policy 3 ++++++++\n");
/*
* Resolve policy min/max to available frequencies. It ensures
* no frequency resolution will neither overshoot the requested maximum
* nor undershoot the requested minimum.
*/
policy->min = new_data.min;
policy->max = new_data.max;
policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
trace_cpu_frequency_limits(policy);
pr_err("+++++++ cpufreq_set_policy 4 ++++++++\n");
policy->cached_target_freq = UINT_MAX;
pr_debug("new min and max freqs are %u - %u kHz\n",
policy->min, policy->max);
if (cpufreq_driver->setpolicy) {
policy->policy = new_pol;
pr_debug("setting range\n");
pr_err("+++++++ cpufreq_set_policy 4.1 ++++++++\n");
return cpufreq_driver->setpolicy(policy);
}
pr_err("+++++++ cpufreq_set_policy 5 ++++++++\n");
if (new_gov == policy->governor) {
pr_debug("governor limits update\n");
cpufreq_governor_limits(policy);
return 0;
}
pr_err("+++++++ cpufreq_set_policy 6 ++++++++\n");
pr_err("governor switch\n");
/* save old, working values */
old_gov = policy->governor;
/* end old governor */
if (old_gov) {
cpufreq_stop_governor(policy);
cpufreq_exit_governor(policy);
}
/* start new governor */
policy->governor = new_gov;
ret = cpufreq_init_governor(policy);
if (!ret) {
ret = cpufreq_start_governor(policy);
if (!ret) {
pr_debug("governor change\n");
sched_cpufreq_governor_change(policy, old_gov);
return 0;
}
cpufreq_exit_governor(policy);
}
/* new governor failed, so re-start old one */
pr_debug("starting governor %s failed\n", policy->governor->name);
if (old_gov) {
policy->governor = old_gov;
if (cpufreq_init_governor(policy))
policy->governor = NULL;
else
cpufreq_start_governor(policy);
}
return ret;
}