【计算机图形学 】扫描线多边形填充算法 | OpenGL+鼠标交互
其他计算机图形学实验
前言
实现多边形扫描线填充算法,并和鼠标进行交互。
具体原理略过,会贴上完整代码,可直接运行。
环境:
vs2019,OpenGL的库(可以搜索如何用vs使用OpenGL的库,可以使用vs自带的插件或者其他方法,很方便)
要点:
1.NET和AET的创建,改动
2.改变鼠标点击和鼠标拖拽的响应事件。
最终效果:
用鼠标随意画顶点,然后展示填充过程
对应控制台会输出顶点坐标和个数
思路借鉴
步骤
1.点的结构体
struct point
{
float x, y;
point(){}
point(int xx, int yy):
x(xx), y(yy) {}
};
vector<point> vertice; //顶点
2. AET 活性边表、NET新边表 的结构体
typedef struct XET
{
float x;
float dx; // 从当前扫描线到下一条扫描线间x的增量,即斜率的倒数
float ymax; //该边所交的最高扫描线的坐标值ymax
XET* next;
}AET, NET; //AET 活性边表; NET新边表
3. 扫描线算法实现
void PolyScan()
{
/*得到最高点的y坐标*/
int Max_Y = 0;
for (int i = 0; i < vertice.size(); i++)
/*Max_Y = max(Max_Y, vertice[i].y);*/
if (vertice[i].y > Max_Y)
Max_Y = vertice[i].y;
//初始化AET表
AET* pAET = new AET;
pAET->next = NULL;
//初始化NET表
NET* pNET[800]; //吊桶
for (int i = 0; i <= Max_Y; i++)
{
pNET[i] = new NET;
pNET[i]->next = NULL;;
}
//扫描并且建立NET表
int len = vertice.size(); //顶点个数
for (int i = 0; i <= Max_Y; i++)
{
for (int j = 0; j < len; j++) //扫描每个点
{
if (i == vertice[j].y)
{
//如果一个点和前一个点有一条边相连,则该点和后面一个点也相连
//!这个式子 便于最后一个顶点和第一个点相连 和 防止出现负数
//判断当前点的高低,使ymax、DX、DY的计算有变化
if (vertice[(j - 1 + len) % len].y > vertice[j].y)
{
//前一个点在当前点的上方
NET* p = new NET;
p->x = vertice[j].x;
p->ymax = vertice[(j - 1 + len) % len].y;//与当前扫描线相交的活性边 的 最高点即为相邻顶点的y
float DX = vertice[(j - 1 + len) % len].x - vertice[j].x;
float DY = vertice[(j - 1 + len) % len].y - vertice[j].y;
p->dx = DX / DY;//dx为直线斜率的倒数
p->next = pNET[i]->next;
pNET[i]->next = p;
}
if (vertice[(j + 1) % len].y > vertice[j].y)
{
//后一个点在当前点的上方
NET* p = new NET;
p->x = vertice[j].x;
p->ymax = vertice[(j + 1) % len].y;
float DX = vertice[(j + 1) % len].x - vertice[j].x;
float DY = vertice[(j + 1) % len].y - vertice[j].y;
p->dx = DX / DY;//dx为直线斜率的倒数
p->next = pNET[i]->next;
pNET[i]->next = p;
}
}
}
}
//建立并且更新活性边表AET
//各条扫描线i
for (int i = 0; i <= Max_Y; i++)
{
/*把新边表NET[i] 中的边结点用插入排序法插入AET表,使之按x坐标递增顺序排列*/
//计算每条扫描线上不同线产生的新的交点x,更新AET
NET* p = pAET->next;
while (p)
{
p->x = p->x + p->dx; //更新x坐标
p = p->next;
}
//断表排序,不再开辟空间
AET* tq = pAET;
p = pAET->next;
tq->next = NULL;
while (p)//顺着链表往下走
{
//找到第一个比它大的数字tq->next->next->x,则从p->next到tq->next都是比p->x小的
while (tq->next != NULL && tq->next->x <= p->x)
tq = tq->next;
//插入p到tq和tq->next之间
NET* t = p->next;
p->next = tq->next;
tq->next = p;
p = t;
tq = pAET;//回到头
}
/*(改进算法) 取消求交,减少计算量*/
//先从AET表中删除ymax==i的结点****************************************/
//像素的取舍问题,保证多边形的“下闭上开”,避免填充扩大化(交点的个数应保证为偶数个)
AET* q = pAET;
p = q->next;
while (p)
{
if (p->ymax == i)
{
q->next = p->next;
delete p;
p = q->next;
}
else
{
q = q->next;
p = q->next;
}
}
//若NET中有新点,将其用插入法插入AET,按x递增的顺序排列
p = pNET[i]->next;
q = pAET;
while (p)
{
while (q->next && p->x >= q->next->x)
q = q->next;
//插入p
NET* t = p->next;
p->next = q->next;
q->next = p;
p = t;
q = pAET;//回到头
}
//配对后填充颜色
p = pAET->next;
while (p && p->next != NULL)
{
for (float j = p->x; j <= p->next->x; j++)
{
//扫描线画点
draw_a_point(j, i);
//cout << "(" << j << ", " << i << ")" << endl;
}
p = p->next->next;//考虑端点情况
}
}
glFlush();
}
4. 改变鼠标响应函数
void mymouse(int button, int state, int x, int y)
{
//左键
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
draw_a_point(x, window_height - y);
point p(x, window_height - y);
vertice.push_back(p);
cout << "顶点" << vertice.size() << ": (" << x << ", " << window_height - y << ")" << endl;
}
//右键
if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
{
glClearColor(1, 1, 1, 1);//设置绘制窗口颜色为白色
glColor3f(0, 1, 1);
//绘制多边形
glBegin(GL_LINES);
for (int i = 0; i < vertice.size(); i++)
{
if (i == vertice.size() - 1)//画完最后一个点,使其闭合
{
glVertex2f(vertice[0].x, vertice[0].y);
glVertex2f(vertice[i].x, vertice[i].y);
}
else
{
glVertex2f(vertice[i].x, vertice[i].y);
glVertex2f(vertice[i + 1].x, vertice[i + 1].y);
}
}
glEnd();
glFlush();
}
//鼠标中间
if (button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
{
//cout << "center: (" << x << ", " << y << ")" << endl;
//BoundaryFill4(x, window_height - y);
//BoundaryFill4_Stack(x, window_height - y);
cout << "多边形顶点个数为" << vertice.size() << "。 " << "开始扫描线填充。" << endl;
PolyScan();
}
}
完整代码
//扫描线算法
#include<iostream>
#include<gl/glut.h>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
const int window_width = 800, window_height = 600;
const int maxn = 99999;
struct point
{
float x, y;
point(){}
point(int xx, int yy):
x(xx), y(yy) {}
};
vector<point> vertice; //顶点
typedef struct XET
{
float x;
float dx; // 从当前扫描线到下一条扫描线间x的增量,即斜率的倒数
float ymax; //该边所交的最高扫描线的坐标值ymax
XET* next;
}AET, NET; //AET 活性边表; NET新边表
void draw_a_point(int x, int y);
void PolyScan();
void mymouse(int button, int state, int x, int y);
void display();
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition(100, 50);
glutInitWindowSize(window_width, window_height);
glutCreateWindow("扫描线填充");
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, window_width, 0, window_height);
glClearColor(1, 1, 1, 1);
glClear(GL_COLOR_BUFFER_BIT);
glutMouseFunc(&mymouse);
glutDisplayFunc(&display);
glutMainLoop();
return 0;
}
//画点函数
void draw_a_point(int x, int y)
{
glBegin(GL_POINTS);
glColor3f(0, 1, 1);
glVertex2f(x, y);
glEnd();
glFlush();
}
void PolyScan()
{
/*得到最高点的y坐标*/
int Max_Y = 0;
for (int i = 0; i < vertice.size(); i++)
/*Max_Y = max(Max_Y, vertice[i].y);*/
if (vertice[i].y > Max_Y)
Max_Y = vertice[i].y;
//初始化AET表
AET* pAET = new AET;
pAET->next = NULL;
//初始化NET表
NET* pNET[800]; //吊桶
for (int i = 0; i <= Max_Y; i++)
{
pNET[i] = new NET;
pNET[i]->next = NULL;;
}
//扫描并且建立NET表
int len = vertice.size(); //顶点个数
for (int i = 0; i <= Max_Y; i++)
{
for (int j = 0; j < len; j++) //扫描每个点
{
if (i == vertice[j].y)
{
//如果一个点和前一个点有一条边相连,则该点和后面一个点也相连
//!这个式子 便于最后一个顶点和第一个点相连 和 防止出现负数
//判断当前点的高低,使ymax、DX、DY的计算有变化
if (vertice[(j - 1 + len) % len].y > vertice[j].y)
{
//前一个点在当前点的上方
NET* p = new NET;
p->x = vertice[j].x;
p->ymax = vertice[(j - 1 + len) % len].y;//与当前扫描线相交的活性边 的 最高点即为相邻顶点的y
float DX = vertice[(j - 1 + len) % len].x - vertice[j].x;
float DY = vertice[(j - 1 + len) % len].y - vertice[j].y;
p->dx = DX / DY;//dx为直线斜率的倒数
p->next = pNET[i]->next;
pNET[i]->next = p;
}
if (vertice[(j + 1) % len].y > vertice[j].y)
{
//后一个点在当前点的上方
NET* p = new NET;
p->x = vertice[j].x;
p->ymax = vertice[(j + 1) % len].y;
float DX = vertice[(j + 1) % len].x - vertice[j].x;
float DY = vertice[(j + 1) % len].y - vertice[j].y;
p->dx = DX / DY;//dx为直线斜率的倒数
p->next = pNET[i]->next;
pNET[i]->next = p;
}
}
}
}
//建立并且更新活性边表AET
//各条扫描线i
for (int i = 0; i <= Max_Y; i++)
{
/*把新边表NET[i] 中的边结点用插入排序法插入AET表,使之按x坐标递增顺序排列*/
//计算每条扫描线上不同线产生的新的交点x,更新AET
NET* p = pAET->next;
while (p)
{
p->x = p->x + p->dx; //更新x坐标
p = p->next;
}
//断表排序,不再开辟空间
AET* tq = pAET;
p = pAET->next;
tq->next = NULL;
while (p)//顺着链表往下走
{
//找到第一个比它大的数字tq->next->next->x,则从p->next到tq->next都是比p->x小的
while (tq->next != NULL && tq->next->x <= p->x)
tq = tq->next;
//插入p到tq和tq->next之间
NET* t = p->next;
p->next = tq->next;
tq->next = p;
p = t;
tq = pAET;//回到头
}
/*(改进算法) 取消求交,减少计算量*/
//先从AET表中删除ymax==i的结点****************************************/
//像素的取舍问题,保证多边形的“下闭上开”,避免填充扩大化(交点的个数应保证为偶数个)
AET* q = pAET;
p = q->next;
while (p)
{
if (p->ymax == i)
{
q->next = p->next;
delete p;
p = q->next;
}
else
{
q = q->next;
p = q->next;
}
}
//若NET中有新点,将其用插入法插入AET,按x递增的顺序排列
p = pNET[i]->next;
q = pAET;
while (p)
{
while (q->next && p->x >= q->next->x)
q = q->next;
//插入p
NET* t = p->next;
p->next = q->next;
q->next = p;
p = t;
q = pAET;//回到头
}
//配对后填充颜色
p = pAET->next;
while (p && p->next != NULL)
{
for (float j = p->x; j <= p->next->x; j++)
{
//扫描线画点
draw_a_point(j, i);
//cout << "(" << j << ", " << i << ")" << endl;
}
p = p->next->next;//考虑端点情况
}
}
glFlush();
}
void mymouse(int button, int state, int x, int y)
{
//左键
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
draw_a_point(x, window_height - y);
point p(x, window_height - y);
vertice.push_back(p);
cout << "顶点" << vertice.size() << ": (" << x << ", " << window_height - y << ")" << endl;
}
//右键
if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
{
glClearColor(1, 1, 1, 1);//设置绘制窗口颜色为白色
glColor3f(0, 1, 1);
//绘制多边形
glBegin(GL_LINES);
for (int i = 0; i < vertice.size(); i++)
{
if (i == vertice.size() - 1)//画完最后一个点,使其闭合
{
glVertex2f(vertice[0].x, vertice[0].y);
glVertex2f(vertice[i].x, vertice[i].y);
}
else
{
glVertex2f(vertice[i].x, vertice[i].y);
glVertex2f(vertice[i + 1].x, vertice[i + 1].y);
}
}
glEnd();
glFlush();
}
//鼠标中间
if (button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
{
//cout << "center: (" << x << ", " << y << ")" << endl;
//BoundaryFill4(x, window_height - y);
//BoundaryFill4_Stack(x, window_height - y);
cout << "多边形顶点个数为" << vertice.size() << "。 " << "开始扫描线填充。" << endl;
PolyScan();
}
}
void display()
{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 0.4, 0.2);
glPointSize(1);
glBegin(GL_POINTS);
PolyScan();
glEnd();
glFlush();
}
总结
扫描线算法部分,建立NET 和 建立并且更新活性边表AET 这两个地方比较复杂,可以带入图中多想