简单介绍一下Yolov5

YoloV5是一种基于目标检测的深度学习模型,是YOLO系列模型的最新版本。YoloV5相对于前几个版本,改进了网络结构和训练方式,提高了检测精度,同时也减少了推理时间。YoloV5使用了轻量级的网络结构,可以在不牺牲准确率的情况下减少模型大小和计算量。 YoloV5采用了新的网络结构,称为CSPNet(Cross Stage Partial Network)。该网络结构采用了跨阶段部分连接来提高特征提取的效率,同时也避免了信息丢失的问题。此外,CSPNet还通过使用SPP(Spatial Pyramid Pooling)模块来提高特征提取的效率,以及使用PAN(Path Aggregation Network)模块来融合不同的特征图,从而提高检测精度。 YoloV5还引入了自适应训练技术。传统的训练方式需要手动调整学习率和训练时长等参数,而自适应训练技术可以自动调整这些参数,从而提高模型的训练效率和准确率。此外,YoloV5还使用了数据增强技术和MixUp技术来增加训练数据的多样性,提高模型的鲁棒性。 总之,YoloV5是一种高效、精确的目标检测模型,可以用于各种实际应用中,如自动驾驶、安防监控、智能交通等。

下面是CSPNet的代码实现

import torch
import torch.nn as nn
import torch.nn.functional as F
class CSPBlock(nn.Module):
    def __init__(self, in_channels, out_channels, bottleneck_ratio=0.5):
        super(CSPBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, int(out_channels * bottleneck_ratio), 1)
        self.bn1 = nn.BatchNorm2d(int(out_channels * bottleneck_ratio))
        self.conv2 = nn.Conv2d(in_channels, int(out_channels * bottleneck_ratio), 1)
        self.bn2 = nn.BatchNorm2d(int(out_channels * bottleneck_ratio))
        self.conv3 = nn.Conv2d(int(out_channels * bottleneck_ratio), int(out_channels * bottleneck_ratio), 3, padding=1)
        self.bn3 = nn.BatchNorm2d(int(out_channels * bottleneck_ratio))
        self.conv4 = nn.Conv2d(int(out_channels * bottleneck_ratio), int(out_channels * bottleneck_ratio), 3, padding=1)
        self.bn4 = nn.BatchNorm2d(int(out_channels * bottleneck_ratio))
        self.conv5 = nn.Conv2d(int(out_channels * bottleneck_ratio * 2), out_channels, 1)
        self.bn5 = nn.BatchNorm2d(out_channels)
    def forward(self, x):
        x1 = self.conv1(x)
        x1 = self.bn1(x1)
        x2 = self.conv2(x)
        x2 = self.bn2(x2)
        x2 = F.relu(x2)
        x2 = self.conv3(x2)
        x2 = self.bn3(x2)
        x2 = F.relu(x2)
        x2 = self.conv4(x2)
        x2 = self.bn4(x2)
        x = torch.cat((x1, x2), dim=1)
        x = F.relu(x)
        x = self.conv5(x)
        x = self.bn5(x)
        return x
class CSPNet(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(CSPNet, self).__init__()
        self.stem_conv = nn.Conv2d(in_channels, 32, 3, padding=1)
        self.stem_bn = nn.BatchNorm2d(32)
        self.layer1 = nn.Sequential(
            CSPBlock(32, 64),
            nn.MaxPool2d(2),
            CSPBlock(64, 128),
            nn.MaxPool2d(2),
            CSPBlock(128, 256),
            nn.MaxPool2d(2),
            CSPBlock(256, 512),
            nn.MaxPool2d(2),
            CSPBlock(512, 1024),
        )
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(1024, num_classes)
    def forward(self, x):
        x = self.stem_conv(x)
        x = self.stem_bn(x)
        x = F.relu(x)
        x = self.layer1(x)
        x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

基于PyTorch的YOLOv5的推理代码实现:首先通过attempt_load加载模型,然后对输入图像进行预处理,将其转换为torch tensor,并推送到设备上。然后通过模型进行预测,得到预测结果,并进行后处理,包括非极大值抑制和坐标转换。最后将预测结果绘制在图像上并显示。实际使用时,需要设置对应的模型路径、输入图像路径、阈值等参数。

import torch
import cv2
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, plot_one_box
from utils.datasets import letterbox
# 设置device,推荐使用GPU进行推理
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载模型
model = attempt_load('path/to/weights.pt', map_location=device)
model.to(device).eval()
# 设置阈值和IOU阈值
conf_thres = 0.25
iou_thres = 0.45
# 定义类别名称
class_names = ['person', 'car', 'bus', 'truck', 'traffic_light', 'stop_sign']
# 加载图像
img0 = cv2.imread('path/to/image.jpg')
# 对图像进行预处理
img = letterbox(img0, new_shape=model.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)  
img = np.ascontiguousarray(img)
# 将图像转为torch tensor并推送到设备上
img = torch.from_numpy(img).to(device)
img = img.float() / 255.0
img = img.unsqueeze(0)
# 进行预测
pred = model(img, augment=False)[0]
# 进行后处理
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=None, agnostic=False)
# 将预测结果绘制在图像上
for i, det in enumerate(pred):
    if len(det):
        det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
        for *xyxy, conf, cls in reversed(det):
            label = f'{class_names[int(cls)]} {conf:.2f}'
            plot_one_box(xyxy, img0, label=label, color=(0, 255, 0), line_thickness=2)
# 显示图像
cv2.imshow('img', img0)
cv2.waitKey(0)
cv2.destroyAllWindows()