Windows CPU部署llama2量化模型并实现API接口
模型部署
从huggingface下载模型
https://huggingface.co/
放在本地文件夹,如下
本地运行llama2
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained("D:\llm\llama2\models\llama2-7b-chat-ggml", model_file = 'llama-2-7b-chat.ggmlv3.q3_K_S.bin')
print(llm('<s>Human: 介绍一下中国\n</s><s>Assistant: '))
使用fastapi实现API接口
服务端
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
from ctransformers import AutoModelForCausalLM
# 参考 https://blog.csdn.net/qq_36187610/article/details/131835752
app = FastAPI()
class Query(BaseModel):
text: str
@app.post("/chat/")
async def chat(query: Query):
input = query.text
llm = AutoModelForCausalLM.from_pretrained("D:\llm\llama2\models\llama2-7b-chat-ggml", model_file = 'llama-2-7b-chat.ggmlv3.q3_K_S.bin')
output = llm('<s>Human: ' + input + '\n</s><s>Assistant: ')
print(output)
return {"result": output}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=6667)
客户端
import requests
url = "http://192.168.3.16:6667/chat/" # 注意这里ip地址不能使用0.0.0.0,而是使用实际IP地址,通过ipconfig可以查看
query = {"text": "你好,请做一段自我介绍,使用中文回答,不能超过100个字。"}
response = requests.post(url, json=query)
if response.status_code == 200:
result = response.json()
print("BOT:", result["result"])
else:
print("Error:", response.status_code, response.text)
常用git仓库
https://github.com/marella/ctransformers
https://github.com/FlagAlpha/Llama2-Chinese
https://github.com/tiangolo/fastapi