lostash Timeout executing grok 问题排查
文章目录
Timeout executing grok 问题排查
使用logstash的时候发现会有这个报错,导致logstash不稳定,input端是kafka,就会导致kafka的反复rebalance,一开始排查思路有问题,而且网上的资料可能都是其中的一个原因,所以导致我的排查思路偏了。
1. 问题背景
我有一组logstash 从kafka中消费日志数据,解析后丢到ES当中,提供一些日志的检索能力。大概的配置是这样的。
1. 基础配置
-
logstash版本 7.5.0
-
jvm
-
java -version openjdk version "1.8.0_312" OpenJDK Runtime Environment (build 1.8.0_312-b07) OpenJDK 64-Bit Server VM (build 25.312-b07, mixed mode)
-
-Xms6g -Xmx6g
-
-
config/logstash.yml
-
pipeline.workers: 6 pipeline.batch.size: 50
-
2. pipeline配置
input {
kafka{
bootstrap_servers => "xxx:9092"
topics_pattern => "log_.*"
auto_offset_reset => "latest"
group_id => "log-es-find"
consumer_threads => 1
client_id => "node123"
partition_assignment_strategy => "org.apache.kafka.clients.consumer.RoundRobinAssignor"
max_poll_interval_ms => "600000"
max_poll_records => "100"
codec => json {
charset => "UTF-8"
}
}
}
filter {
mutate {
remove_field => [ "host","@timestamp" ]
}
if "_LOGV3_" not in [message] {
grok {
match => {
"message" => '^%{LOGLEVEL:log_level} %{TIMESTAMP_ISO8601:time} %{HOST:host_name} %{SERVICCE:service_type} %{STRING:process} %{STRING:thread} - %{SESSION_ID:session_id} %{GREEDYDATA:message_log}$'
}
remove_field => ["message"]
}
} else {
grok {
match => { "message" => '^%{LOGLEVEL:log_level} %{TIMESTAMP_ISO8601:time} %{HOST:host_name} %{SERVICCE:service_type} %{STRING:process} %{STRING:thread} _LOGV3_ %{SESSION_ID:session_id} %{EVENT_MARK:event} %{GREEDYDATA:message_log}$'
}
}
json {
source => "message_log"
target => "doc.custom"
remove_field => ["message","message_log"]
}
mutate {
rename => { "doc.custom" => "doc.%{event}" }
}
}
if "_groktimeout" in [tags] {
grok {
match => {"message" => "^%{LOGLEVEL:log_level} %{TIMESTAMP_ISO8601:time} %{HOST:host_name} %{SERVICCE:service_type}"}
remove_tag => [ "_groktimeout" ]
add_tag => [ "timeout" ]
}
}
if "_grokparsefailure" in [tags] {
grok {
remove_tag => [ "_grokparsefailure" ]
add_tag => [ "grok_failure" ]
match => { "message" => '^%{LOGLEVEL:log_level} %{TIMESTAMP_ISO8601:time} %{HOST:host_name} %{SERVICCE:service_type} %{GREEDYDATA:message_log}$' }
}
}
date {
match => ["time", "ISO8601"]
target => "@timestamp"
locale => "cn"
}
mutate {
remove_field => ["time", "@metadata","host","input", "agent","ecs","log" ]
}
if "_grokparsefailure" in [tags] {
mutate {
add_field => {
"service_type" => "grok_failure"
}
}
}
if "_groktimeout" in [tags] {
mutate {
add_field => {
"service_type" => "grok_time_out"
}
}
}
}
output {
elasticsearch {
hosts => ["http://es:9200"]
index => "mai_log_%{[service_type]}_detail_%{+YYYY.MM.dd}"
user => "elastic"
password => "xxx"
}
}
2. 问题表现
因为之前搞过这一套,所以就很熟练的搭建起来了,logstash也没有做太多的配置,重点是没有对gc日志进行配置,没有打印gc日志,影响了后面的判断。
logstash启动后表现异常,只是数据中有的数据的json字段是可以无限拓展的,导致ES中的有些索引有问题,后来把对应的一些字段修改为flattened
解决了相关问题。但是logstash还有一个问题就是运行个7,8个小时就开始不稳定,频繁的与kafka失去联系,导致频繁发生rebalance。查看日志,发现有下面这样的日志:
[2021-11-25T11:22:57,107][WARN ][logstash.filters.grok ][main] Timeout executing grok '%{LOGLEVEL:log_level} %{TIMESTAMP_ISO8601:time} %{HOST:host_name} %{SERVICCE:service_type} %{STRING:process} %{STRING:thread} - %{SESSION_ID:session_id} %{GREEDYDATA:message_log}$' against field 'message' with value 'Value too large to output (3876 bytes)! First 255 chars are: debug 2021-11-25T11:01:35.303029+08:00 kvm-jobs-job-index-online3 go_recall_job 30343 30349 - 10e11e80e227f6053f1637809295e246 uid=187853021, user={"Uid":187853021,"ExpectPosition":"跨境运营","LikeWords":[{"Term":"运营","Weight":0.62232894},{"Term":"跨境","Weight"'!
频繁的rebalance导致logstash几乎无法工作
3. 尝试通过修改 memory-queue+ poll-size
这个时候想着有可能是某些字段的grok太复杂导致了logstash在处理数据的时候超时了?拿着Timeout executing grok
作为关键字搜索了一波,大部分也是说grok使用的pattern太复杂了,于是年少无知的我又开始优化pattern(其实我的pattern并不复杂)。同时学习了一下logstash的消费模型。logstash的input和(filter+output)是分开的,input只是负责数据拉取,放到内存的缓存队列memory-queue中,filter从memory-queue中取数据消费。memory-queue是有大小限制的,当filter+output比较慢的话就会阻塞input的操作,这个时候我想会不会因为每次从kafka pull的数据太多导致呢?poll的数据太多,filter消费不动,导致input等待太久导致了kafka的超时。当时想着Timeout executing grok
是因为少量比较特殊的数据导致的,这种情况也符合偶先的情况。
于是上面的一些配置做了改动
pipeline.workers: 6
pipeline.batch.size: 50
max_poll_interval_ms => "600000"
max_poll_records => "100"
这个实际上是改动后的配置,之前用的是默认的,比这个大。
再次重启了logstash,心想这次应该没有啥问题了吧,结果运行了一天左右,还是出现了上面的问题,黔驴技穷了,想了想,只能试试分析一下gc日志了,于是又开启了gc日志。
4. 通过gc日志定位问题
开启gc
jvm.options
## GC logging
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-XX:+PrintClassHistogram
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationStoppedTime
# log GC status to a file with time stamps
# ensure the directory exists
-Xloggc:./gc_logs/gc.log
再次重启,等问题再次复现的时候观察gc日志 , 发现有频繁的full-gc操作,以至于logstash无法进行工作了,因为几乎所有的时间都在进行full-gc, 但是full-gc之后内存没有下降,很明显,发生了内存泄露,应该是logstash的啥bug让我触发了
2021-11-27T17:36:21.048+0800: 78068.514: [CMS-concurrent-mark-start]
2021-11-27T17:36:23.878+0800: 78071.344: [Full GC (Allocation Failure) 2021-11-27T17:36:23.878+0800: 78071.344: [CMS2021-11-27T17:36:25.512+0800: 78072.978: [CMS-concurrent-mark: 4.462/4.464 secs] [Times: user=39.30 sys=0.82, real=4.47 secs]
(concurrent mode failure): 4194303K->4194303K(4194304K), 35.7906436 secs] 6081790K->4204353K(6081792K), [Metaspace: 103267K->103267K(1155072K)], 35.7908146 secs] [Times: user=44.59 sys=0.67, real=35.79 secs]
2021-11-27T17:36:59.669+0800: 78107.135: Total time for which application threads were stopped: 35.7917723 seconds, Stopping threads took: 0.0000556 seconds
2021-11-27T17:36:59.673+0800: 78107.139: Total time for which application threads were stopped: 0.0027825 seconds, Stopping threads took: 0.0001835 seconds
2021-11-27T17:37:00.674+0800: 78108.140: Total time for which application threads were stopped: 0.0007674 seconds, Stopping threads took: 0.0000516 seconds
2021-11-27T17:37:01.669+0800: 78109.135: [GC (CMS Initial Mark) [1 CMS-initial-mark: 4194303K(4194304K)] 4310321K(6081792K), 0.0121234 secs] [Times: user=0.10 sys=0.00, real=0.02 secs]
2021-11-27T17:37:01.681+0800: 78109.147: Total time for which application threads were stopped: 0.0129999 seconds, Stopping threads took: 0.0000897 seconds
2021-11-27T17:37:01.681+0800: 78109.147: [CMS-concurrent-mark-start]
2021-11-27T17:37:06.359+0800: 78113.825: [CMS-concurrent-mark: 4.678/4.678 secs] [Times: user=43.90 sys=1.14, real=4.67 secs]
2021-11-27T17:37:06.359+0800: 78113.825: [CMS-concurrent-preclean-start]
2021-11-27T17:37:06.569+0800: 78114.035: [Full GC (Allocation Failure) 2021-11-27T17:37:06.569+0800: 78114.035: [CMS2021-11-27T17:37:12.639+0800: 78120.106: [CMS-concurrent-preclean: 6.278/6.280 secs] [Times: user=7.09 sys=0.17, real=6.28 secs]
(concurrent mode failure): 4194303K->4194303K(4194304K), 40.9531845 secs] 6081787K->4205126K(6081792K), [Metaspace: 103268K->103268K(1155072K)], 40.9533777 secs] [Times: user=39.95 sys=0.84, real=40.96 secs]
2021-11-27T17:37:47.523+0800: 78154.989: Total time for which application threads were stopped: 40.9546434 seconds, Stopping threads took: 0.0000614 seconds
使用jamp看了一下内存分布
jmap -histo:live $pid
num #instances #bytes class name
----------------------------------------------
1: 17289297 691571880 org.jruby.util.ByteList
2: 17245027 689801080 org.jruby.RubyString
3: 17417048 659620560 [C
4: 17334568 554706176 java.util.concurrent.ConcurrentHashMap$Node
5: 17214558 550865856 org.logstash.FieldReference
6: 17296590 514218192 [B
7: 17416092 417986208 java.lang.String
8: 8271 135421720 [Ljava.util.concurrent.ConcurrentHashMap$Node;
9: 139671 4469472 java.util.HashMap$Node
10: 74368 4338232 [Ljava.lang.Object;
看起来不对劲儿,然后再社区发了一个discuss,果然是logstash的一个bug,遗憾的是这个bug已经有人提交commit了,但是还没有修复。。。
触发这个bug的原因是我的json 里面有一些字段搞的不规范,导致所有的日志中json的key的总合是上亿的,所以发生了内存泄露。是json filter的一个bug。
回顾这个问题,最开始的时候,一直以为是自己使用有问题,所以也就没有去打印gc,加上依赖自己之前的经验,感觉ELK应该bug比较少,真的没有想到,绕了一大圈,栽跟头了。。。