ForkAndJoin->RecursiveTask

一、用途

Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行。Java7引入了Fork/Join框架,我们通过RecursiveTask这个类就可以方便地实现Fork/Join模式。

我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一个线程内完成:

┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

还有一种方法,可以把数组拆成两部分,分别计算,最后加起来就是最终结果,这样可以用两个线程并行执行:

┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

如果拆成两部分还是很大,我们还可以继续拆,用4个线程并行执行:

┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘

 二、实例代码

例如,对一个大数组进行并行求和的RecursiveTask,就可以这样编写:

class SumTask extends RecursiveTask<Long> {

    static final int THRESHOLD = 100;
    long[] array;
    int start;
    int end;

    SumTask(long[] array, int start, int end) {
    this.array = array;
        this.start = start;
        this.end = end;
    }

    @Override
    protected Long compute() {
        if (end - start <= THRESHOLD) {
            // 如果任务足够小,直接计算:
            long sum = 0;
            for (int i = start; i < end; i++) {
                sum += array[i];
            }
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            System.out.println(String.format("compute %d~%d = %d", start, end, sum));
            return sum;
        }
        // 任务太大,一分为二:
        int middle = (end + start) / 2;
        System.out.println(String.format("split %d~%d ==> %d~%d, %d~%d", start, end, start, middle, middle, end));
        SumTask subtask1 = new SumTask(this.array, start, middle);
        SumTask subtask2 = new SumTask(this.array, middle, end);
        invokeAll(subtask1, subtask2);
        Long subresult1 = subtask1.join();
        Long subresult2 = subtask2.join();
        Long result = subresult1 + subresult2;
        System.out.println("result = " + subresult1 + " + " + subresult2 + " ==> " + result);
        return result;
    }


public static void main(String[] args) throws Exception {
    // 创建随机数组成的数组:
    long[] array = new long[400];
    fillRandom(array);
    // fork/join task:
    ForkJoinPool fjp = new ForkJoinPool(4); // 最大并发数4
    ForkJoinTask<Long> task = new SumTask(array, 0, array.length);
    long startTime = System.currentTimeMillis();
    Long result = fjp.invoke(task);
    long endTime = System.currentTimeMillis();
    System.out.println("Fork/join sum: " + result + " in " + (endTime - startTime) + " ms.");
}
}

关键代码是fjp.invoke(task)来提交一个Fork/Join任务并发执行,然后获得异步执行的结果。

我们设置任务的最小阀值是100,当提交一个400大小的任务时,在4核CPU上执行,会一分为二,再二分为四,每个最小子任务的执行时间是1秒,由于是并发4个子任务执行,整个任务最终执行时间大约为1秒。

新手在编写Fork/Join任务时,往往用搜索引擎搜到一个例子,然后就照着例子写出了下面的代码:

protected Long compute() {
    if (任务足够小?) {
        return computeDirect();
    }
    // 任务太大,一分为二:
    SumTask subtask1 = new SumTask(...);
    SumTask subtask2 = new SumTask(...);
    // 分别对子任务调用fork():
    subtask1.fork();
    subtask2.fork();
    // 合并结果:
    Long subresult1 = subtask1.join();
    Long subresult2 = subtask2.join();
    return subresult1 + subresult2;
}

很遗憾,这种写法是**错!误!的!**这样写没有正确理解Fork/Join模型的任务执行逻辑。

JDK用来执行Fork/Join任务的工作线程池大小等于CPU核心数。在一个4核CPU上,最多可以同时执行4个子任务。对400个元素的数组求和,执行时间应该为1秒。但是,换成上面的代码,执行时间却是两秒。

这是因为执行compute()方法的线程本身也是一个Worker线程,当对两个子任务调用fork()时,这个Worker线程就会把任务分配给另外两个Worker,但是它自己却停下来等待不干活了!这样就白白浪费了Fork/Join线程池中的一个Worker线程,导致了4个子任务至少需要7个线程才能并发执行。

打个比方,假设一个酒店有400个房间,一共有4名清洁工,每个工人每天可以打扫100个房间,这样,4个工人满负荷工作时,400个房间全部打扫完正好需要1天。

Fork/Join的工作模式就像这样:首先,工人甲被分配了400个房间的任务,他一看任务太多了自己一个人不行,所以先把400个房间拆成两个200,然后叫来乙,把其中一个200分给乙。

紧接着,甲和乙再发现200也是个大任务,于是甲继续把200分成两个100,并把其中一个100分给丙,类似的,乙会把其中一个100分给丁,这样,最终4个人每人分到100个房间,并发执行正好是1天。

如果换一种写法:

// 分别对子任务调用fork():
subtask1.fork();
subtask2.fork();

这个任务就分!错!了!

比如甲把400分成两个200后,这种写法相当于甲把一个200分给乙,把另一个200分给丙,然后,甲成了监工,不干活,等乙和丙干完了他直接汇报工作。乙和丙在把200分拆成两个100的过程中,他俩又成了监工,这样,本来只需要4个工人的活,现在需要7个工人才能1天内完成,其中有3个是不干活的。

其实,我们查看JDK的invokeAll()方法的源码就可以发现,invokeAll的N个任务中,其中N-1个任务会使用fork()交给其它线程执行,但是,它还会留一个任务自己执行,这样,就充分利用了线程池,保证没有空闲的不干活的线程。